Gas sorption and non-Darcy flow in shale reservoirs
نویسندگان
چکیده
منابع مشابه
Gas Flow Behavior of Nanoscale Pores in Shale Gas Reservoirs
The gas transport in shale nanopores is always one of the major concerns in terms of the development of shale gas reservoirs. In this study, the gas flow regimes in shale nanopores were classified and analyzed according to Knudsen number. Then the gas flow model considering Darcy flow, slip flow, transition flow, molecular free flow and adsorption effect was proposed to evaluate the gas flow be...
متن کاملProduction Optimization in Shale Gas Reservoirs
Natural gas from organic rich shales has become an important part of the supply of natural gas in the United States. Modern drilling and stimulation techniques have increased the potential and profitability of shale gas reserves that earlier were regarded as unprofitable resources of natural gas. The most prominent property of shale gas reservoirs is the low permeability. This is also the reaso...
متن کاملSPE 139250 Analysis of Mechanisms of Flow in Fractured Tight-Gas and Shale-Gas Reservoirs
In this paper we analyze by means of numerical simulation the mechanisms and processes of flow in two types of fractured tight gas reservoirs: shale and tight-sand systems. The numerical model includes Darcy’s law as the basic equation of multiphase flow and accurately describes the thermophysical properties of the reservoir fluids, but also incorporates other options that cover the spectrum of...
متن کاملNumerical Simulation of Single-Phase and Multiphase Non-Darcy Flow in Porous and Fractured Reservoirs
A numerical method as well as a theoretical study of non-Darcy fluid flow through porous and fractured reservoirs is described. The non-Darcy behavior is handled in a three-dimensional, multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation for describing single-phase or multiphase non-Darcy flow and displacement. The non-Darcy flow through a frac...
متن کاملUpscaling non-Darcy flow
We consider upscaling of non-Darcy flow in heterogeneous porous media. Our approach extends the pressure-based numerical homogenization procedure for linear Darcy flow, due to Durlofsky, to the nonlinear case. The effective coefficients are not constants but rather mildly varying functions of prevailing gradients of pressure. The upscaled model approximates the fine grid model accurately and, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Petroleum Science
سال: 2017
ISSN: 1672-5107,1995-8226
DOI: 10.1007/s12182-017-0180-3